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The present work extends our recently published study �Phys. Rev. E 73, 066224 �2006�� on a mechanism
of pattern formation in excitable media due to inhomogeneous boundary conditions �BC�. To that end, we
analyze a pair of coupled excitable and oscillatory cells, a distributed FitzHugh Nagumo model, and a distrib-
uted five-variable model that describes CO catalytic oxidation. For the three systems we determine the struc-
ture of the oscillatory domains, composed of bands of complex firing solutions with period-adding bifurcations,
and show the commonality of the structures. The obtained results account for the recently reported experimen-
tal observations of mixed-mode oscillations showing a period-adding bifurcation during CO oxidation on a
disk-shaped catalytic cloth with imposed cold temperature BC.

DOI: 10.1103/PhysRevE.75.056210 PACS number�s�: 05.45.�a, 47.54.�r, 82.40.Bj

I. INTRODUCTION

In a recent study �1� we showed that inhomogeneous
boundary conditions �BC� in a distributed reaction-diffusion
excitable systems are a natural source of permanent pertur-
bations, that can induce wave trains which can be character-
ized as mixed-mode spatiotemporal oscillations showing a
period-adding bifurcation sequence when a parameter is var-
ied. The present work extends this mechanism of complex
spatiotemporal pattern formation and outlines the structure of
the sustained solutions in the parameter plane.

Pattern formation in both discrete and distributed excit-
able systems were intensively studied in the past decade. A
single stimulated excitable cell �EC� governed by slow and
fast state variables, and subject to external periodic stimuli
was shown to exhibit a sequence of period-adding bifurca-
tions in the limiting case of large time scale separation; the
temporal behavior becomes even more complex in the case
of a finite time scale ratio �2�. Complex types of the EC
patterns, including frequency-locking and chaotic behavior,
were also studied in Refs. �3–5�. Ensembles of EC and self-
oscillatory cells �OC� can exhibit several scenarios of global
system excitation due to local sources �6–9�. In our previous
study �1� we considered a minimalistic model composed of a
pair of EC and OC, both governed by an S-shaped source
function �FitzHugh-Nagumo �FHN� system� with somewhat
different parameters. �Complex patterns can be obtained in a
pair of identical excitable FHN elements only in the case of
repulsive coupling �10� which implies negative diffusivity.�
We have demonstrated that such a system may exhibit both a
regular solution of 1 :n form �i.e., one EC oscillation corre-
sponds to n OC oscillations� as well as complex and even
chaotic behavior.

While the coupled EC/OC is a simple and natural system,
since one expects to find oscillatory behavior in an excitable
system subject to inhomogeneous BC, the pattern in a dis-
tributed system is more complex as it depends on the ability
of the system to convey the wave and its fate �reflection or
absorption� when reaching the opposite edges. Most studies
of pattern formation in the distributed excitable media were
conducted for unbounded homogeneous media and were

aimed mainly at derivation of the dispersion relation between
the wave speed and the pulse wavelength �11–13�. In the
case of inhomogeneous systems the efforts were focused on
complex pattern formation due to either noise effects �14,15�
or due to different types of localized oscillation sources and
spatial inhomogeneities �16–18�. While various complex pat-
terns were obtained in these studies including regular and
aperiodic mixed-mode type oscillations, no regular bifurca-
tion sequence was detected upon varying a system parameter.
In a recent study �19�, a resonance-induced pacemaker was
proposed as a new source of successive traveling waves in
excitable media. This mechanism was illustrated experimen-
tally as well as numerically for the photosensitive Belousov-
Zhabotinsky reaction stimulated periodically by light. The
sustained patterns exhibit mixed-mode oscillations and admit
a period-adding bifurcation with varying external light fre-
quency.

Boundary conditions are a natural source of permanent
perturbations in distributed excitable or oscillatory systems
and can induce complex patterns without any external forc-
ing �20–23�. While our recent study �1� of moving wave
trains, which can be temporally characterized as mixed-mode
oscillations undergoing a period-adding bifurcation sequence
revealed patterns qualitatively similar to those in Ref. �19�,
the source is not due to imposed external forcing �as in �19��,
but due to the imposed inhomogeneous BC. Aside from the
coupled EC/OS system we simulated in �1� a distributed
FitzHugh Nagumo model and a distributed five-variable
model that describes thermal patterns during catalytic CO
oxidation at atmospheric pressure as in the experimental re-
sults �25� that motivated this study.

In this work we approximate the continuous extended
models to show the similarity with the EC/OC system. The
main focus in the present work is on the analysis of the
oscillatory domain �OD� structure in the parameter space and
the detection of the threshold parameters that ensures the
complex system behavior. The obtained results showing the
similarity of the main features for all models allow us to
conclude that the proposed mechanism of spatiotemporal
pattern formation due to inhomogeneous BC is really a gen-
eral mechanism which may be applied to any excitable
system.
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The structure of this paper is as follows. In the next sec-
tion the minimalistic discrete EC/OC system is described. In
the following two sections the distributed FitzHugh Nagumo
model and the distributed five-variable model that describes
CO catalytic oxidation are considered. In the last section we
discuss the similarity and the distinction of these models.

II. PAIR OF COUPLED AN EXCITABLE AND
OSCILLATORY CELLS

Consider a pair of coupled excitable �1� and oscillatory
�2� cells which are governed by a caricature of the FHN
model with a piecewise-linear nonlinearity: This can be con-
sidered as a minimalistic discrete model which incorporates
the boundary conditions by affecting the governing system:

x1̇ = y1 − Z�x1� − D�x1 − x2� = F1�xi,y1� , �1�

x2̇ = y2 − Z�x2� + D�x1 − x2� − ��x2 − xw� = F2�xi,y2� , �2�

yi
˙ = ��− ��xi − 1� − yi� = g�xi,yi�, i = 1,2, �3�

Z�x� = �a2 + �x + 1�/� , x � �− � ,− 1� ,

a2 − 0.5�a2 − a1��x + 1� , x � �− 1,1� ,

a1 + �x − 1�/� , x � �1, � � ,

�4�

with � ,��1 �see Ref. �1� for details�. We assume that the
fixed point of a single isolated cell �xs ,ys, with D=�=0� is
excitable and xw belongs to the branch opposite of xs �Fig. 1�.
The additional term in Eq. �2� ���x2−xw�� mimics the effect
of BC and ensures shifting of the phase plane of cell 2 to-
wards the oscillatory state. In the limiting case of �→0, �
→0 system �1�–�4� can be simplified further and reduced to
a binary model. In this case the system spends all of its time
on the stable �upper or lower� branches Z�x� with xi= +1 or

−1, respectively �Fig. 1�. Now the phase planes of each cell
can be constructed in a simple way when accounting for the
state variable x of the other cell. The limit points of the
null-curve of cell 1 �y1

LP� coincide with those of Z�x� if both
cells move along the same branch and are shifted by 2D if
the cells belong to opposite branches. The limit points of the
phase plane of cell 2 �y2

LP� get additional shifting at the upper
branch by 2� due to the external forcing. We assume that due
to interaction cell 1 can be shifted to the oscillatory state,
while the phase plane type of cell 2 is preserved. Simple
geometrical considerations allow us to derive the following
conditions for the governing parameters:

ys − a1 � 2� � a2 − a1 − 2D,

ys − a1 � 2D � a2 − a1 − 2�,

2� � a2. �5�

Dynamics of the binary model can be easily predicted by
comparison of the time intervals �	
i , i=1,2� required for
each cell to reach the nearest limit point yi

LP:

	
i
+ = − log

yi
LP

yi
, 	
i

− = − log
yi

LP − 2�

yi − 2�
.

The signs “+” and “−” correspond to the upper and lower
branches, respectively. The conducted analysis revealed that
within domain �5�, upon varying a parameter the system ex-
hibits a sequence of bifurcations leading to formation of
regular 1 :n solutions �i.e., one oscillation of the excitable
cell 1 is coupled with n oscillations of the oscillatory cell 2�,
as well as to chaotic behavior.

The complex oscillations domain �OD� in the �� ,�� plane
shows a sequence of bands of regularly locked 1:n oscilla-
tions �Fig. 2, solutions up to 1:7 are traced� that tend to
asymptotic values with increasing � �with increasing � the
slope of the intermediate branch of null-curve F2�x ,y� as
well as its period of oscillation gradually decrease, so that
the oscillation ratio n gradually increases�. Subdomains of
regular 1:n solutions are separated by gaps in which complex
periodic or chaotic oscillations are exhibited.
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FIG. 1. �Color online� Coupled cells model �Eqs. �1�–�4��. Phase
plane shows source function Z�x� �dash-dotted line�, null cline
g�x ,y�=0 �dotted line�, and the intermediate branches of null clines
Fi�xi ,yi�=0�i=1,2� of cell 1 �thin� and 2 �thick lines�, respectively.
Solid and dashed lines Fi for each cell are shown for the case that
the other cell belongs to the upper �solid� and lower �dashed�
branches, respectively. The star marks a fixed point of the isolated
cell.
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FIG. 2. Coupled cells model �Eqs. �1�–�4��. Typical structure of
the oscillatory solutions in the �� ,�� plane showing subdomains of
regularly locked 1:n solutions separated by gaps of complex �cha-
otic� behavior. Solutions up to 1:7 are traced. a1=−1, a2=20, �
=12.5, D=1, xw=−1. SS denotes the steady state solution.
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The OD can be largely predicted from condition �5�: For
the chosen set of parameters �a1=−1,a2=20,D=1�, accord-
ing to conditions �5�, the OD is bounded by

� � 10, 0.5 � � � 9.5.

A similar structure of the OD has been also detected for a
pair of identical excitable FHN cells coupled repulsively
�10�. This is in principal difference with the behavior of a
single excitable cell periodically stimulated by an external
fixed force �2�, which does not exhibit a chaotic response.

In the case of finite � we expect to find certain changes of
the OD structure �say, an extension of the gaps with aperi-
odic behavior�, as it was detected for a single stimulated EC
�2�. The detailed analysis of this problem is beyond the scope
of the present paper.

III. DISTRIBUTED FHN SYSTEM

We employ a simple model with a fast distributed activa-
tor, and a local �nondiffusing� slow inhibitor,

ẋ − 	x = − x3 + x + y = f�x,y� , �6�

ẏ = ��− �x − y + �� = g�x,y� �7�

subject to the following boundary conditions

� = 0:�x/�� = 0, � = L:�x/�� = ��x − xw� , �8�

where � denotes the spatial or radial coordinate in a planar
case or in a disk, respectively. The diffusion coefficient �D�
is set to unity in Eq. �6� after rescaling the length with re-
spect to �D, while the dimensionless system length is L.

We set the fixed point �FP, �xs ,ys�� of the dynamic system,
governed by ODE, at the upper branch of the null-curve
f�x ,y� �xs

+=0.7,ys=xs
3−xs, Fig. 3� and vary parameters � and

� simultaneously ��=�xs+ys� in order to keep the FP. For
such a set of parameters the dynamic model possesses three
FP’s �xs

± and xs
0� when ��1�0.6325 and a single FP when

���1 �Fig. 3�. The xs
+ state is excitable, xs

0 is a saddle point
and xs

− admits a Hopf bifurcation at �H=1− �xs
+�2− �xH�2

−xs
+xH�0.5933 with xH=−��1−�� /3.
Numerical simulations of a one-dimensional �1D� Carte-

sian system of sufficiently large L revealed a U− shaped
oscillatory domain �OD� in the �� ,�� and �� ,xw� planes
�Figs. 4�a�–4�c�� which lies within the domain of excitability
��̂����̃� and above the corresponding threshold values
�*�� ,xw� and xw

* �� ,��. �Most simulations were conducted
with L=160, a value for which the obtained results appear to
be insensitive to L�.

The structure of the OD is as follows.
�i� Patterns with a source point �SP� are sustained within a

very narrow subdomain adjacent to the low-� boundary of
the OD which is practically invisible in Fig. 4. At the low-�
boundary of the OD with the threshold value �̂��H
the stationary quasi-homogeneous solution (with x���
� �xs

− ,xw�) bifurcates to moving patterns with a narrow front
separating domains of x=xs

+ and x=xs
−, that is bouncing from

both boundaries �Fig. 5�a��. With ���̂ two ignition fronts
are born at the SP and propagate in opposite directions �Fig.
5�b��. The left propagating front leaves the system via the
no-flux �“homogeneous”� boundary, while the right propa-
gating front is reflected from the “inhomogeneous” ��=L�
boundary. With increasing � the SP moves from the left
boundary �with �= �̂� towards the “inhomogeneous” bound-
ary �=L.

�ii� Subdomain of moving pulse solutions �MP� of m :n
structure, where m and n denote the number of temporal
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FIG. 3. FHN model �Eqs. �6�–�8��. The phase plane shows the
null clines f�x ,y�=0 �solid� and g�x ,y�=0 �dashed�. The star marks
the selected fixed point.
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FIG. 4. FHN model �Eqs.
�6�–�8��. The structure of the os-
cillatory domain in the �� ,��
plane �xw=−1/�3 �a��, �xw ,��
plane ��=100 �c��, and �L ,��
plane �xw=−1/�3 and �=100 �d��
showing subdomains �ii� of mov-
ing pulses and subdomain �iii� of
quasistationary oscillating front
�QSOF� solutions. Plate �b� is an
enlargement of plate �a�. Numbers
show the type of MP solution. So-
lutions up to 1:7 are traced. �
=0.1; xw=−1�3 in plates �a�, �b�,
and �d�, �=100 in �c� and �d�; and
L=160 in �a�–�c�.
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oscillations in the central part of the system and at the
boundary where the inhomogeneous BC are applied �Figs. 4
and 5�c�–5�e��, occupies the central and the largest part of
the OD.

�iii� A quasistationary pseudohomogeneous solution, with
x���=xs

+ for most part of the region with a sharp oscillating
front near the boundary �=L �QSOF, Figs. 4 and 5�f��, is
sustained within a subdomain adjacent to the high-� bound-
ary of the OD. Just above that subdomain the system exhibits
a stationary solution.

Let us focus on the system behavior within subdomain
�ii�. The state variables exhibit small-amplitude spatiotempo-
ral oscillations in the vicinity of the right boundary �=L.
Some of these oscillations will induce a traveling pulse that
moves through most part of the computational domain form-
ing a spatiotemporal pattern of m :n type. A typical 1:5 mov-
ing pulse solution is illustrated by Figs. 6�a� and 6�b�. At the
central part of the computational domain including the left
�“homogeneous”� boundary the state variables are at the
fixed point �xs

+ ,ys
+� for most part of the oscillation cycle. In

the vicinity of the “inhomogeneous” boundary the state vari-
ables exhibit small amplitude oscillations with x around xw.
The average frequency of these fast oscillations is about the
order of the Hopf frequency �H=����−�� of a single oscil-

lator which does not depend on the fixed point parameters.
With increasing � the amplitude of such oscillations gradu-
ally decreases, while the type oscillations is practically pre-
served at high � �Fig. 4�a��.

Regular transitions between �1:n� and �1:n+1� patterns
occur only through solutions of �1:n�k�1:n+1� type �i.e., one
oscillation of �1:n+1� type is coupled with k oscillations of
�1:n� type� and k gradually decreases towards �1:n+1� sub-
domain. Such a structure was obtained, for example, at the
�1:2�→ �1:3� transition. Alternatively, within the gap of ir-
regular behavior, patterns with arbitrary oscillation ratios can
be found. For example within the gap �1:5�→ �1:6� a rich
variety of solutions including �1:5��1:4��1:7�, �1:5�2�1:7�,
�1:6��1:8��1:7��1:9� and even chaotic structures have been
detected.

The same three domains �i�–�iii� are evident in the �xw ,��
plane �Fig. 4�c��. Note, that the threshold value xw that de-
fines the lower boundary of the OD belongs either to the
intermediate or to the stable branch of the null-curve
f�x ,y�=0, opposite to the branch with the fixed point xs.
With increasing �xs−xw� deviation the right � boundary of the
OD is gradually shifted toward larger � and tends to a certain
asymptotic value.

FIG. 5. �Color online� A typical bifurcation sequence of spa-
tiotemporal x pattern of the FHN model �Eqs. �6�–�8�� with varying
parameter � in a long system: Pattern with a bouncing front ��
=0.59 �a��, moving pulses �MP� with a source point �0.592 �b��;
regular MP of a simple structure of 1:1 type �0.70 �c��, and with
alternated locking of �1:2��1:3� type �0.7025 �d��; aperiodic MP
�0.7130 �e��; a quasistationary pattern with a period-two oscillating
front �0.71438 �f��. In plate �f� the right half of the computational
domain is plotted. �=0.1, �=100, xw=−1/�3, and L=40.
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FIG. 6. Typical temporal profiles of complex solutions simu-
lated with FHN model �Eqs. �6�–�8� �a�, �b�� and CO oxidation
system �Eqs. �9�–�14� �c�, �d��. Plates �a�, �b� show x profiles of a
1:5 solution at the no-flux boundary �x�0� �a�� and at the inhomo-
geneous boundary �x�L� �b��. �=0.713, L=160, xw=−1/�3, and �
=100. Plates �c� and �d� show temperature profiles of a 1:6 solution
at the center of the disk �T�0� �c�� and at its boundary �T�R� �d��.
�=37.5, PCO

0 =760 Pa, and Tg=493 K; the other parameters as in
Ref. �24�.
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The velocity of the moving pulses �Cf� is defined mainly
by the lumped �ODE� system parameters �see, for example
Ref. �26�� and practically is not affected by the applied BC.
So the spatial period of oscillations can be estimated by the
velocity Cf and the global period of the temporal oscillations.

Now we consider the pattern transformation within sub-
domain �iii�. Numerical simulations revealed that with vary-
ing a parameter towards the nearest boundary of subdomain
�ii�, the QSOF solution exhibits a sequence of period-
doubling bifurcations of small-amplitude oscillations in the
vicinity of the right boundary �=L. This process is accom-
panied by formation of a quasistationary �for most part of the
computational domain� pattern with chaotically oscillating
front in the vicinity of �=L.

We conclude by briefly considering the effect of the sys-
tem length L. The existence of a critical L that supports os-
cillations was derived analytically for a case of an oscillatory
media with Dirichlet BC �i.e., xw=xs, �24��. This is not pos-
sible in the present case of an excitable media with inhomo-
geneous BC and the threshold L was determined numerically
�Fig. 4�d��. With increasing L the oscillatory domain is
shifted towards the smaller � reaching asymptotic values at
large L. For sufficiently small L the pulse solution cannot be
developed and the sustained patterns have the form of a
standing oscillating spot adjacent to the left �no-flux� bound-
ary.

Numerical 2D simulations on a disk revealed only axi-
symmetric patterns. For sufficiently large radii �R� these pat-
terns admit, upon varying a parameter, the same bifurcation
sequence which was detected for the 1D case and the bound-
aries of the subdomains practically coincide with those of the
1D system. With decreasing R, as in the planar case, the
subdomains of complex patterns are shifted toward largest �
�Fig. 7�. Note that in the axisymmetric case, due to the es-
sential effect of the no-flux boundary conditions �here the
symmetry axis�, the inward front propagation can be not only
“arrested” �as it takes place in a planar case�, but also re-
versed forming outward ignited front propagation. The pat-
terns within subdomain �iii�, especially with sufficiently
small R, take a form of breathing patterns �Fig. 7�c��.

IV. CO-OXIDATION MODEL

In this section we demonstrate that the mechanism pro-
ducing complex pattern due to inhomogeneous boundary
conditions can be extended from the learning FHN model to
a more realistic reaction-diffusion model. Catalytic CO oxi-
dation over supported Pd catalyst is a reaction of significant
commercial interest �e.g., Ref. �27��. The dynamics of this
reaction at atmospheric pressure was intensively studied,
both experimentally and numerically, during the past two
decades �see, for example, review �28��. This study is moti-
vated by our recently published experimental study of CO
oxidation on a disk-shaped catalytic cloth with feed flowing
normal and through the cloth �25� showing complex mixed-
mode oscillations. The plate holding the catalyst was not
catalytic and its temperature was close to the ambient one.
Typical IR thermograms exhibit breathing motion, a hot spot
which expands and contracts continuously �small-amplitude
fast �1 min� oscillations� superimposed on the active phase
of the long duration �10–60 min� cycle �Fig. 8�a��. These
oscillations completely map the effluent CO2 temporal pro-
files shown in Fig. 8�b�. The number of the smaller peaks
varied with operating conditions �the reactor temperature�
showing a period-adding sequence �Fig. 8�c��. We analyze
here the complex patterns produced by a mathematical
model that was previously published by us �29�. We describe
first the model and the lumped-system bifurcation diagram
followed by the distributed system analysis.

A. Mathematical model and lumped system

The model incorporates three elements: a surface oscilla-
tor �Eqs. �9�–�11��, a thermal solid-phase balance assuming
that the reactor fluid temperature is fixed and the catalysis is
thin �Eq. �12��, and a gas-phase reactor balance. Due to the
lack of intercrystallites communication in supported catalysts
the surface species are assumed to be not diffusing, so ther-
mal conduction and gas-phase fluxes are the only means of

FIG. 7. �Color online� Typical bifurcation sequence of spa-
tiotemporal x pattern of the FHN model �Eqs. �6�–�8�� on a disk
with varying parameter �: Standing spots ��=0.78 �a��; regular
oscillations of 1:4 type �0.805 �b��; continuously breathing oscilla-
tions �0.81 �c��. R=10; the other parameters as in Figs. 6�a� and
6�b�.
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FIG. 8. �Color online� Catalytic CO oxidation experimental re-
sults �24� showing the surface temperature pattern �the square root
of the active fraction of the disk surface �a��, the effluent product
�CO2� temporal concentration profile �b�, and a bifurcation diagram
with varying reactor temperature �Tg� showing the number of high-
frequency breathing oscillations �n� during the active phase of the
cycle �c�.
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interaction. To write correct balances we should account for
gas-phase diffusion �or dispersion� in directions parallel and
perpendicular to the disk. In order to simplify the analysis we
employ a quite realistic mixed model to describe the CO
gas-phase balance �Eq. �14��. The resulting balance equa-
tions are of the form

dx

dt
= k1PCO�1 − x − y� − k−1x − k3xy − k5xz , �9�

dy

dt
= k2PO2

e−�z�1 − x − y�2 − k3xy − k4y�1 − z� , �10�

dz

dt
= k4y�1 − z� − k5xz , �11�


T
�T

�t
− LT

2�2T = �Tg − T� + aRCO, RCO = k3xy , �12�

r = 0: Tr� = 0, r = R: Tr� = ��Tg − T� , �13�


P
dPCO

dt
= �PCO

0 − PCO� − B*	RCO� 
, RCO� = k1PCO�1 − x − y�

− k−1x . �14�

Here x and y are the concentration of adsorbed carbon mon-
oxide and adsorbed oxygen respectively; z is the concentra-
tion of oxygen in a subsurface layer; T and PCO are the solid
temperature �K� and reactant gas phase concentration �Pa�,
respectively, 	•
 denotes average over the catalyst. The
boundary conditions �Eq. �13�� implies heat loss to the cir-
cular frame holding the catalysis. The kinetic parameters are
those suggested in Ref. �30� with fast activators �x and y� and
a slow inhibitor �z�. The geometrical, transport and kinetic
parameters of the catalyst system were estimated according
to experimental data: R=1.8 cm, LT=�sd /h�0.14 cm, 
T
=�sCps /h�2 s, B*=bSRTref /q=4.62 s Pa, a=b�−	H� /h
=0.75 K s,
P=V /q=0.9 s �see Ref. �29� for details�.

Before studying the disk �distributed� system let us ana-
lyze the relevant lumped model ignoring the boundary ef-
fects �i.e., without conduction in Eq. �12��. As was shown in
Refs. �32,33� the oscillatory domains of the distributed CO
oxidation models, that do not account for the interaction be-
tween the local and space average variables �at least in the
case of no flux BC�, practically coincide with those of the
relevant lumped systems. A typical bifurcation diagram of
the lumped model �9�–�14� showing the effect of feed CO
concentration �PCO

0 � presents �Fig. 9, simulated by means of
the software package AUTO �34�� a steady isolated �high-
temperature� and fold-shaped �low- and middle-temperature�
branches. The stable high-temperature branch undergoes a
supercritical Hopf bifurcation at point H1 and subcritical at
point H2, while the low-temperature branch undergoes a sub-
critical Hopf bifurcation at point H3. The stable oscillatory
branch emanating from H1 exhibits a period-doubling bifur-
cation at point PD1 where it merges with the unstable oscil-
latory branch emanating from H2. Within the domain ap-
proximately bounded by H2 and PD1 �noted by I in Fig. 9�
the lumped system exhibits bursting solutions of 1:n type
with a global cycle composed of n small-amplitude fast os-
cillations around the high-temperature steady state coupled
with a large-amplitude slow oscillation loop close to the un-
stable period-one orbit. With varying a parameter these os-
cillations admit a period-adding bifurcation sequence with a
clearly distinguished stair-case structure �Fig. 10�. These
temporal patterns were previously investigated by us �29,31�
and attributed to a canard bifurcation of the reduced four-
variable subsystem of the original model which was derived
by converting one of the state variable �T� to be a prescribed
parameter.

B. Distributed system

We portray the behavior in the �PCO
0 , �� plane. Numerical

simulations of the partial differential equation �PDE� system
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FIG. 9. �Color online� Lumped CO oxidation system �Eqs.
�9�–�14� with LT=0�. Typical bifurcation diagram as a function of
the feed CO concentration �PCO

0 � showing homogeneous �thick
lines� and oscillatory �thin lines� branches. Solid and dashed lines
correspond to stable and unstable solutions, respectively. Hi mark
the Hopf bifurcation points; PD1 is period-doubling. Complex os-
cillations appear in domain I in the lumped system and in domains
I and II in the distributed system with imposed homogeneous and
inhomogeneous BC, respectively. Tg=493 K; the other parameters
as in Ref. �29�.
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with the no-flux boundary conditions ��=0� yield spatially
homogeneous patterns identical to the lumped model solu-
tions, i.e., the system exhibits simple period-one oscillations
when PH1� PCO

0 � PPD1, bursting oscillations within domain
I with PPD1� PCO

0 � PH2 and stationary quasi-homogeneous
solutions with PCO

0 � PH2. Thus, the oscillatory domain of the
distributed system �9�–�14� practically coincides with this of
the relevant lumped model.

In the case of inhomogeneous BC ���0� a large domain
of complex system behavior �noted by II in Fig. 11� emerges
within a domain of stable �excitable� states of the corre-
sponding lumped system. As in the case of the FHN model
this domain is U- shaped showing clear PCO

0 asymptotes
when �→� �i.e., fixed-temperature BC�.

Within domain II we find three subdomains of qualita-
tively different behavior: Quasihomogeneous oscillations
�QHO, Fig. 12�b�, noted by �i� in Fig. 11�, complex mixed-
mode patterns �Figs. 12�c�–12�e�, �ii� in Fig. 11� and breath-
ing patterns �Fig. 12�f�, �iii� in Fig. 11�. Note that the two last
types were detected also for the FHN model.

The complex spatiotemporal m:n type patterns �Figs.
12�c�–12�e�� exist at moderate � and admit period-adding
bifurcations with varying a parameter. Due to relatively
small disk radii �corresponding to experimental conditions�
we did not observe fully developed pulse propagation as was
obtained using the FHN model. Instead, the system exhibits a
sequence of high frequency, breathing oscillations with a hot
spot in the central part of the disk separated by intervals of
completely extinguished state. Typical 1:6 complex solution
is illustrated by Figs. 6�c� and 6�d� showing the temporal
profiles of the surface temperature at the disk center �c� and
at its boundary �d�. Due to the small disk radii small ampli-
tude fast oscillations generated at the boundary do not decay
up to the disk center leading to formation of the mixed-mode
oscillations on the whole surface.

The number �n� of small amplitude breathing oscillations
increases with � and, as in the case of the learning models,
the subdomains of regular 1 :n oscillations are separated by

gaps of more complex and even chaotic behavior. The detec-
tion of all internal subdomain boundaries is very time-
consuming and is skipped in the present study, especially in
view of their high sensitivity to the system parameters,
which makes the OD structure nonuniversal.

Continuous breathing patterns �Fig. 12�f�� are detected at
high-� and large PCO

0 . These simple period-one oscillations
bifurcate with decreasing � �near the boundary with subdo-
main �ii�� forming a sequence of aperiodic breathing pat-
terns.

For the set of parameters employed in Fig. 9 domain II is
adjacent to domain I of the LM and is approximately
bounded by H2 and H3 bifurcations. The subdomain of quasi-
homogeneous oscillations existing at low � �QHO, Fig. 11,
subdomain �i�� emerges due to the properties of the LM.
With increasing � they gradually bifurcate to a simple 1:1
structure.

V. DISCUSSION

We demonstrated that external forcing via boundary ef-
fects in a reaction-diffusion excitable system can generate
temporally-complex spatiotemporal patterns that are charac-
terized by a period-adding scenario when a parameter is var-
ied. We mapped such a behavior for two continuously dis-
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FIG. 11. Distributed CO oxidation system �Eqs. �9�–�14��. The
structure of the oscillatory domain in the ��, PCO

0 � plane showing
subdomains of quasihomogeneous oscillations �i�, complex mixed-
mode oscillations �ii�, and breathing patterns �iii�. Dashed-dotted
line separates domains I and II �Fig. 9�. R=1.8 cm; the parameters
as in Fig. 9.

FIG. 12. �Color online� CO oxidation system �Eqs. �9�–�14��.
Typical bifurcation sequence of the spatiotemporal temperature pat-
terns in the distributed system upon increasing � showing stationary
pattern ��a� �=1.3�, a quasihomogeneous firing pattern of 1 :n type
��b� �=1.62�, a period-one pattern ��c� �=2.5�, a regular 1:3 pattern
��d� �=10�, an aperiodic oscillations ��e� �=45�, and a continuous
breathing pattern ��f� �=100�. PCO

0 =760 Pa. The other parameters
as in Fig. 11.
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tributed systems with either a cubic autocatalytic kinetics
model �FHN� or with a realistic CO oxidation model, when
both are subject to a BC of the third type. A similar behavior
was mapped for a simple two cell binary model with a piece-
wise linear kinetics �2CPWK� and we want to explain this
similarity.

While the 2CPWK model captures the main features of
the excitable FHN model subject to inhomogeneous BC, and
both models exhibit domains of frequency-locked solutions
separated by gaps of aperiodic �chaotic� behavior, the trans-
lation of the former to the later required some explanation, as
we do below.

The boundaries of the oscillatory domain of the 2CPWK
model �Eqs. �1�–�4�� are defined �Eq. �5�� by the requirement
that upon interaction between the cells, the phase plane of
cell 1 is shifted from an excitable to an oscillatory state,
while the cell 2 oscillatory phase plane is preserved. The
model is written in a way that within this domain the “excit-
ability” parameter � and the “boundary” coefficient � do not
affect the existence of the limiting points having a constant
xi

LP �±1� and varying yi
LP. Contrary, these parameters affect

the period of oscillation: With increasing � the slope of the
intermediate branch of null-curve F2�x ,y� �Fig. 1�, as well as
its oscillation period and the amplitude y2

LP+−y2
LP− gradually

decreases. As the oscillation period tends to zero with �
→ �a2−a1−2D�, we observed condensation of 1 :n subdo-
mains towards this boundary �Fig. 2�.

In the two extended models the effects of the “boundary”
coefficient � and the “excitability” parameter �� in the FHN
model and PCO

0 in the CO oxidation model� on the system
behavior are qualitatively different since their change affects
the form of the null-curves. To illustrate this distinction con-
sider a finite-difference approximation of the 1D FHN sys-
tem with cubic kinetics �6�–�8�:

xi
˙ −

1

	
� xi+1 − xi

	
−

xi − xi−1

	
� = f�xi,yi� + O�	� , �15�

yi
˙ = ��− �xi − yi + �� = g�xi,yi�, i = 1, . . . ,N , �16�

x2 − x1

	
= ��x2 − x1� + O�	�,

xN − xN−1

	
= O�	� , �17�

where N is the number of grid points and 	=L / �N−1� is a
constant space step. As a first step we employ a three-point
mesh �N=3� so that point i=2 is the only internal point gov-
erned by Eqs. �15� and �16�. With incorporation of BC �17�
into Eq. �15� we obtain

x2̇ = − x2
3 + x2�1 −

�

	
� + y2 +

�

	
xw = F�x2,y2,

�

	
,xw� .

�18�

The limit points of null-curve F�x2 ,y2 ,� /	 ,xw�=0 are

x2
± = ±�1 − �/	

3
, y2

± = �x2
±�3 − x2

±�1 −
�

	
� −

�

	
xw.

�19�

Now the necessary condition for cell 2 to be oscillatory can
be easily formulated �Fig. 13�a��:

�− � � � �+, �± =
y2

± − ys

xs − x2
± , 0 � �/	 � 1, �20�

where �xs ,ys� is the steady state of the isolated �excitable�
system. A typical lentil-like domain of the oscillatory solu-
tion in the �� /	 ,�� plane is shown in Fig. 13�b� �within the
left subdomain with �+����− Eq. �18� admits three steady
state solutions�.

Next, we can extend the grid up to N=4 with two internal
points �2 and 3�. After incorporation of BC �17� into appro-
priate Eq. �15� we obtain a two-cell system similar to model
Eqs. �1�–�4� with the exception of the nonlinear source
terms. Comparison of this two-cell model with that of
2CPWK shows that while � plays a similar role, its effect on
the limit points is quite different.

In the limiting �→� case “inhomogeneous” BC �17�
should be replaced by x1=xw, while coefficient � in Eqs.
�15�–�20� should be replaced by 1/	. Hence we can find
both lower and upper � boundaries of the OD with respect to
parameter 1 /	2 �instead of � /	, Fig. 13�b��. As these values
do not depend on �, we can suggest that the boundaries of
the OD tend to certain asymptotic values with �→�. The
conducted analysis explains the U-shaped form of the OD
�Figs. 4 and 11� in the �parameter, �� plane bounded by two
asymptotes that persist as �→�, and by a low-� boundary
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FIG. 13. �Color online� The phase plane transformation of the
FHN model due to applied BC. Plate �a� shows the unperturbed null
curve f�x ,y�=0 �Eq. �6�, solid lines�, shifted null curve
F�x ,y ,� /	 ,xw�=0 �Eq. �18�, dashed-dotted lines�, and the g�x ,y�
=0 null curves corresponding to limiting � values �Eq. �20�, dashed
lines�. The star marks the selected fixed point. Plate �b� shows the
OD in the �� /	 ,�� plane for a case of small � �Eqs. �18��.
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since for �=0 �no-flux BC� the system is excitable and ex-
hibits a stationary solution.

Next we show the commonality of the CO oxidation and
the FHN models. The x ,y surface species in the former ex-
hibit bistability with respect to z species, and their interaction
produces relaxation oscillation with wide �three orders of
magnitude� separation of time scales. The state variables x ,y
and z are not diffusing and the communication is mediated
by conduction �the enthalpy balance� and mixing �mass bal-
ances�; an interaction between local and space average vari-
ables, such as that described by Eq. �14� can also affect the
pattern selection mechanism. Due to large time scale separa-
tion we can conduct a simplified qualitative phase plane
analysis of the relevant ODE system using its fast �Eqs. �9�,
�10�, �12�, and �14�� and slow �Eqs. �9�, �11�, �12�, and �14��
subsets. Typical phase plane projections on �z ,T� and �z ,x�
planes constructed in such a way are shown in Fig. 14 �“fast”
and “slow” null curves are shown by solid and dashed lines
correspondingly�. The steady state solution �denoted by the
star in Fig. 14� is stable following the bifurcation map of Fig.
9 and the corresponding phase plane can be described as
excitable.

The comprehensive analysis of the full five variable sys-
tem �9�–�14� with account for global coupling is very com-
plicated, and as a fist step we can consider a modified system
assuming that the gas-phase mixing is absent �instead of the
spatially average source term in Eq. �14��. To get some in-
sight into the BC effect we can incorporate an additional
term �

	 �T−Tg� into the finite-difference approximation of Eq.
�12� following the approach described above �Eq. �18�� and
to repeat the procedure. The conducted analysis shows that
upon increasing � /	 the corresponding phase plane can ex-
hibit up to three fixed points and is highly sensitive to the
state parameters �particularly to the “excitability” parameter
PCO

0 �. Thus, we can reasonably expect a qualitative realign-
ment of the system behavior and transformation from the
stationary solution �with �=0� to a certain pattern state with
��0. To ascertain that global coupling is not the source of
the complex pattern formation we ran additional simulations
�assuming no gas-phase mixing� and using the same set of
parameters. These simulations revealed a sequence of mov-
ing pulse solutions of a 1:n structure typical for long sys-
tems which admits period adding bifurcations within the
�PCO

0 , �� OD of a modified structure with respect this of Fig.
11. Comparison of these results with simulations of the origi-
nal model allows to conclude that for condition under con-
sideration global coupling leads to a certain equalization of
variables at least at the central part of the disk �formation of
breathing patterns� and shifting of the oscillatory subdomain
boundaries, but do not change the mechanism of the complex
pattern formation due to the boundary effects.

Typical phase plane trajectories of the complex pattern
solution of original system �9�–�14� are shown in Fig. 14. In
the disk center the trajectory is composed of a large ampli-
tude loop for all state variables and several small amplitude
loops close to the steady state. Near the disk boundary the
phase trajectory exhibits small amplitude loops with respect
to the diffusive variable �T� for which the BC are imposed
�Fig. 14�b��. Upon varying a parameter the number of small
amplitude loops is varied both in the disk center and at its
boundary. Such phase planes are also typical for the classical
FHN model simulated in Sec. III. The complex form of the
�PCO

0 , �� bifurcation map as opposed to the relatively simple
FHN bifurcation diagrams is probably due to the more com-
plex five-variable system behavior �compare Fig. 3 and Fig.
14�.

Summarizing the obtained results with continuously dis-
tributed models we can conclude that the structure of the
oscillatory domain in the �� ,�� or �PCO, �� planes is
U-shaped due to two asymptotes of strong BC ��→ � ,x
→xw ,T→Tw� and a lower �-boundary since for �=0 the
system exhibits homogeneous solutions. Numerical simula-
tions of the FHN and the CO-oxidation models revealed two
types of complex patterns which seem to be generic for dis-
tributed excitable systems subject to inhomogeneous bound-
ary conditions.

�1� Temporal m:n structures with the boundary sending
moving pulses �subdomain �ii��; it consists of wide subdo-
mains of regular 1 :n patterns separated by gaps of more
complex and even chaotic behavior.

�2� Continuously breathing regular or aperiodic patterns
with an oscillating front �subdomain �iii��.
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FIG. 14. �Color online� CO oxidation model �Eqs. �9�–�14��.
Typical lumped system phase plane projections of “fast” �Eqs. �9�,
�10�, �12�, and �14�, dashed-dotted lines� and “slow” �Eqs. �9�, �11�,
�12�, and �14�, dashed lines� null curves on �z ,T �a�, �b�� and �z ,x
�c�, �d�� planes. Solid lines show typical simulated �1:5� PDE solu-
tion at the disk center ��a�, �c�� and at its boundary ��b�, �d��. The
parameters are as in Figs. 6�c� and 6�d�. The star marks the fixed
point �additional intersections are obtained as projections of twisted
curves on a plane and do not correspond to any fixed point�.
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Finally we would like to point out that the numerically
simulated patterns within subdomain �ii� of the CO oxidation
model qualitatively match our experimental observations of
CO catalytic oxidation on a disk �25� �compare Fig. 8�a� and
Fig. 12�e��. To get a good quantitative agreement a certain
parameter adjustment is required, which can be easily justi-
fied as most of the kinetic constants �as well as the catalyst
properties� are not known exactly.
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